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A number of fundamental problems with the topological analysis of molecular electron
densities using the atoms in molecules (AIM) theory developed by Bader and coworkers have
been highlighted recently. In the present article we provide complements and further details
on this topics in the form of a frequently asked questions text.
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Introduction

The theory of atoms in molecules put forward by Bader and coworkers claims that
the boundaries of the “the atoms of Chemistry” are uniquely dictated by the Schwinger
variational formulation of quantum theory. The observation by Dr. Jayatilaka that the
local zero flux condition used to define these boundaries was sufficient but not neces-
sary [1, section 4], and our own reflections on the molecular structure problem [2] and
discovery that Bader and coworkers’ application of Schwinger variational principle was
mathematically incorrect [1, section 3], led the two of us to write the article entitled
“Some fundamental problems with zero flux partitioning of electron densities” [1]. This
latter work has attracted much interest and feedback from the quantum chemistry com-
munity. The first comments of Prof. Bader in July 1999 on our initial manuscript, those
of the referees and the many questions raised at invited seminars and at the congresses
where this work has been presented (6 or more including the 25th CHITEL in Napoli,
September 1999, the 10th ICQC in Menton and its satellite in La-Colle-sur-Loup)
helped us to make our arguments clearer. However, it appears from a number of com-
ments we have received since the publication of our article, that there are still some
misunderstandings. Moreover, a recent rebuttal by Prof. Bader [3] invokes a counter ar-
gument to remedy to the incorrect use of the Hilbert and Courant theorem we had noted
in [1, section 3].
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The purpose of the present document, which is presented in the form of a frequently
asked questions document (FAQ) is to clarify some points made in [1] too succinctly and
to demonstrate that the argument in [3] that “Schwinger’s principle requires the use of a
special class of trial functions” is flawed.

Question 1. Figure 1 of [1] illustrates that one can construct an infinite number of local
zero flux surfaces partitioning the electron density of a molecule. There are the surfaces
which define atomic domains according to the AIM theory and extra ones which include
a nucleus of the molecule. Can the problem of the extra surfaces be overcome by defining
the AIM as attractor basins of the electron density in the frame of catastrophe theory [4]?

Yes, defining the AIM as attractor basins of the electron density rules out the extra
surfaces that include an attractor such as a nucleus. In the conclusion of [1] it is only
claimed that the difficulties due to excited vibrational states would subsist with such a
definition. However, Bader considers the local zero flux surface as the fundamental con-
cept to define AIM. He writes [3]: “Within this theory (the quantum theory of AIM [5])
an atom is defined as an open system, one that is bounded by a surface∂� (delimiting
the domain�) of local zero flux in the gradient vector field of the electron densityρ(r),
as given in equation (1):

∇ρ(r) · n(r) = 0, ∀r ∈ ∂�, (1)

wheren(r) is the (outward) unit vector normal to the surface atr.” This leads him to
write erroneously [3]: “Topologically, a zero-flux surface always represents a partition-
ing between attractor domains” whereas it is the reverse that is true: “A partitioning
surface between attractor domains is always a zero-flux surface.”

Question 2. In [1, section 1] the use of the cusp condition made by Bader in a foot-
note [6] for excluding nuclei from zero flux surfaces is criticised. In [3] Bader has
expanded his idea in an entire section entitled “the cusp condition”. Is the objection
of [1] answered by accepting that the AIM partitioning of space with zero flux surface
be “contingent upon the use of the Coulombic Hamiltonian” (conclusion of [3])?

No, our objection still holds. Bader in [3] demonstrates that the cusps can be
ignored by the chemist both experimentally (up to energies that would result in the for-
mation of a plasma) and theoretically (they are homeomorphic to regular(3,−3) critical
points), but at the same time he makes them play a critical role in the definition of an
atom. We find that this is not consistent.

Question 3. Is it possible to consider the global attractors of the electron density (such
as the “shell attractors” of excited electronic states mentionned in [1, section 2]) and
their basins as “a separate entity with a definable set of contributing properties” [3]?

It is an interesting proposal to try to give a physical meaning to every attractor of
the electron density. However as noted in [3] this violates Dalton’s dictum that an atom



P. Cassam-Chenaï / Frequently asked questions on 147

be indivisible. Given this, can it still be argued that the atoms of the AIM theory are “the
atoms of Chemistry”?

Question 4. Does the counterexample presented in [1, section 3] challenge Schwinger’s
principle of stationary action [7]?

Absolutely not. Schwinger’s principle applied to the H atom example with the con-
straint that the wave function be square integrable, hence vanishing almost everywhere
at infinity, gives (as expected) the Schrödinger equation. It is only claimed in [1] that
the application of this principle to a system bounded with local zero flux surfaces as pre-
sented in the AIM theory is not correct because it relies on a theorem whose hypotheses
are not met.

Question 5. If the answer to question 4 is negative, what is wrong with the claim that
when applied to an isolated closed system such as the H atom example, the “generalised
Schwinger’s principle” reduces to Schwinger’s original principle because the zero flux
condition is fulfilled at infinity [8]?

Bader and co-workers’ application of Schwinger’s principle to an open system is
based on the system being partitioned by zero flux surfaces as defined by equation (1).
If it is a bona fide “generalisation” it has to work in the same way for the particular case
of a closed system. That is, in both cases, one has to start from equation (1) and solve
it to obtain the zero flux surfaces of the system. The fact that the zero flux condition is
fulfilled at infinity is a necessary but not sufficient condition to recover the traditional
derivation of Schrödinger equation from the “generalisation” of Schwinger’s principle.
One has to show in addition that there is no other surface at finite distance inL2 satisfying
equation (1) for the trial wave functions. Unfortunately, this is not the case.

Question 6. In the example of [1, section 3] is there any attempt to vary the “surface
found at infinity” whose mathematical meaning is not clear?

No. The mathematically well-defined wave function is varied. In the AIM theory
the boundaries of the subsystem depend upon the wave function through equation (1), so
may vary accordingly. However, since all wave functions satisfy the zero flux condition
at infinity, the “surface found at infinity” associated with the different wave functions
were identified through the mappingsg	 in [1]. Therefore, the “surface found at infinity”
can be seen as “fixed” in our attempt to apply Hilbert and Courant’s theorem [9, p. 260].
However, we agree that one should avoid this language and that we should be blamed to
have borrowed it from the AIM literature (see [5, p. 31] “the interatomic surfaces, along
with the surfaces found at infinity, are the only closed surfaces ofR3 which satisfy the
zero-flux condition of equation (1)”).



148 P. Cassam-Chenaï / Frequently asked questions on

Question 7. Can the closed isolated system be considered as a limiting case of an open
system for which the zero flux partitioning does not apply in the same way as in open
systems?

Yes, one can. The problem is that the zero flux condition does not work any bet-
ter with open systems. In a polyatomic molecule, the fact that in the vicinity of any
square integrable function there are other square integrable functions with extra zero
flux surfaces remains true and prevents the application of Hilbert and Courant theorem
[9, p. 260].

Question 8. Bader in a recent reply [3] has a new argument that the variations of the
wave function should avoid those functions with extra zero flux surfaces. Does this
solve the problem?

Bader argues that the variation of the wave functionδ� should be proportional to
an Hermitian operator̂G applied to�. The variation made in [1, section 3] can of course
be cast into this form by setting:{

Ĝ+� = � ′,
Ĝ+	 = 0 if 〈	|�〉 = 0,

(2)

that is,Ĝ+, is the operator which excites� to � ′ and is null on the orthocomplement
of � (in [1] � was the hydrogen 1s function and� ′ a scaled hydrogen 2s function),

Ĝ− = (
Ĝ+

)†
, (3)

and

Ĝ = Ĝ+ + Ĝ−, (4)

that is,Ĝ is the sum of the operator,̂G+, and its Hermitian conjugate,̂G−. Bader adds
that the operator̂G must be “physical” without defining what he exactly means. We
guess, however, that our operatorĜ is not “physical” because the resulting trial function
does not belong to the special class of trial functions he considers. But then, how are we
supposed to derive the Schrödinger equation from, say, [8, equation (6) or equation (47)]
(see also the textbook [5]) or more simply from∫ (

Ĥ� − E�)
δ�∗ = 0? (5)

This step relies upon the application of the fundamental lemma of the calculus of varia-
tion [9, p. 185]. A more appropriate version of the lemma for theLp spaces is employed
in [10, p. 61]. Withp = 2 (the space of square integrable functions) it can be written as∫

uh = 0, ∀u ∈ L2 ⇒ h = 0. (6)
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According to Bader,u ≡ δ�∗ is not free to vary in allL2 for it has to avoid all the
functions with extra zero flux surfaces. Therefore this lemma cannot be invoked. How
then can one conclude thath ≡ Ĥ� − E� = 0 for� ∈ L2? It is the derivation of the
Schrödinger equation that is forfeited with Bader’s argument.

Finally, we note that in Schwinger’s article [7] there is no restriction on the vari-
ation of the field componentsδ0φα (equations (2.16) and (2.17)), therefore, one can
legitimately obtain the equations of motion (equation (2.18)).

Question 9. When one follows the construction scheme of section 3, one usually finds
functions which have more than one extra zero flux surface and can be high in energy.
Is there a way to obtain more realistic functions?

In the construction of a trial function with at least one extra zero flux surface,
we have looked for a function of the open sphere of radiusε centered on the ground
state wave function that has a node. However, a zero flux surface also appears where
the derivative of the trial function with respect to the radial distance vanishes (see [1,
equation (6)]). Similarly, we have set the restrictionr = 3a because we had more
freedom than needed and this was simplifying the algebra. However, the wave function
corresponding to a givena value may have other nodes at other radial distances. For
these two reasons the function in our counter example may have more zero flux surfaces
than that expected atr = 3a by construction. For instance, in [1, figure 2] we see
that three zero flux surfaces would occur at finite distance. Having more than one non
connected zero flux surfaces at finite distance does not affect the validity of our counter
example. We were not solving variationally the Schrödinger equation (in which case
a practical algorithm would probably not consider our trial function), we were dealing
with the derivability of the Schrödinger equation itself from Bader’s “generalisation” of
Schwinger variational principle.

Question 10. Bader has emphasized in [3] that equation (1) is not a necessary but only
a sufficient condition for the cancellation of the quantity

δI� = δ
{∫

�(�)

∇2ρ�(r)dr

}
(7)

correcting the false statements noted in [1, section 4]. Does this address the criticism
made in section 4?

No, our criticism has not been addressed, because Bader has not drawn from this
statement the logical conclusion that the cancellation of the quantityδI� used to obtain
his “operational statement of Schwinger’s principle” [3, equation (8)] could only justify
the net zero flux condition, equation (8) below, and not the local zero flux condition
equation (1) which is a stronger, sufficient but not necessary condition.
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Question 11. In [1, section 4] it is argued that the more general condition,

∇ρ(r) · n(r) = ∇ ×A(r) · n(r), ∀r ∈ ∂�, (8)

is sufficient to obtain equation (8) from equation (7) in [3]. However, does such an
equation admit a solution forA(r) nonconstant?

Let us exhibit a net zero flux surfaces that is not a local zero flux one. We set
A(r) = (1/2)K × r , withK a constant vector. Then equation (8) becomes

∇ρ(r) · n(r) = K · n(r), ∀r ∈ ∂�. (9)

Using Cartesian coordinates and settingK = (0,0,−K) (without loss of generality)
andr = (x, y, S(x, y)) (whereS is the function to determine), we have more explicitly

∇ρ(
x, y, S(x, y)

) · (∂S(x, y)
∂x

,
∂S(x, y)

∂y
,−1

)
= K, (10)

∀r ∈ ∂�. We consider again the case of a hydrogen atom in its ground state so that

∇ρ(r) = −2

π
e−2r r̂, (11)

wherêr is the unit vector alongr. Because of the cylindrical symmetry of the problem,
it is convenient to change to polar coordinates in thexy-plane by setting

x = t cosφ, y = t sinφ. (12)

ChoosingK = 1/π (the normalisation factor of the density) equation (10) is then trans-
formed into

t
∂S(t, φ)

∂t
= S(t, φ)− e2

√
t2+S(t,φ)2√t2+ S(t, φ)2

2
. (13)

We note that the derivative ofS with respect toφ does not appear in this expression
as could be anticipated by symmetry. So, it reduces to a differential equation of the
variable t , the dependency ofS uponφ can be suppressed and the partial derivative
symbol replaced by a total derivative symbol. The condition at the limitt = 0 is found
by noticing that for symmetry reasons the normal must be aligned withK for this value
of t and so is the gradient of the density. Then equation (9) implies∇ρ(r) = K and we
obtainS(0) = log(2)/2. A numerical solution of equation (13) with this condition at the
limit t = 0 is depicted in figure 1.

Question 12. From section 5 on, why did you use the same symbolr (respectivelyR)
for the electronic (respectively nuclear) position vector and for the set of position vec-
tors?

In fact, the position vectors,r, r2, . . . , rNe,R1, . . . ,RNn, were meant to be in italic
font and the sets of position vectorsr = (r, r2, . . . , rNe) andR = (R1, . . . ,RNn) not in
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Figure 1. The curveS(t) solution of equation (13) withS(0) = ln[2]/2 andφ arbitrary. The atomic surface
S(t, φ) is the surface of revolution ofS(t) over the vertical axis. The hydrogen nucleus is at the origin.

italic fonts. This was OK in the proofs, but everything came out not in italic fonts in the
published version.

Question 13. In [1, section 5], why is the adiabatic approximation used instead of the
more usual Born–Oppenheimer (BO) approximation?

The “adiabatic” approximation we have referred to is the Born adiabatic approx-
imation [11] for a given translation-free molecular Hamiltonian and with “electronic”
wave functions,{�ke(r,R)}k, that need not be exact solutions of the eigenvalue problem
of the part of the Hamiltonian containing electronic operators. It differs from the related
BO approximation by the fact that the integrals containing the gradient or the gradient
square of the electronic wave function with respect to the nuclear displacements are not
neglected. Since the cancellation of the latter integrals was not necessary for making our
point, we placed ourselves in the general frame of the adiabatic approximation.

Similarly, the particular molecule-fixed coordinate system used to separate off the
translation or the method employed to obtain the electronic wave functions were not
specified as they were not of particular relevance to our point.

All that was needed at this stage of our demonstration was that the Born–Huang
expansion of the wave function

�(r,R) = "k�ke(r,R)�kn(R) (14)

be reduced to a single term, (in equation (14){�ke(r,R)}k is an orthonormal basis set
of “electronic” wave functions for every value ofR, and {�kn(R)}k is the set of the
associated nuclear wave functions).

Question 14. Can the AIM approach be carried out at a node of the adiabatic nuclear
function if an exact wave function expanded as in equation (14) is used?
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Yes, of course. It seems extremely unlikely that all the terms in equation (14) could
vanish for the same value ofR. This is why, in contrast with the adiabatic case, we did
not claim that a “catastrophe” was occuring with such a wave function. We contended
that an AIM analysis could be performed at a node of the dominant term (assuming that
the adiabatic approximation is reasonable so that there exists such a term) but that it
would not be chemically meaningful because it would only correspond to the structure
of the tail of the wavefunction equation (14). We might be wrong on this point and
the structure given by the application of Bader’s analysis could prove of some physical
relevance. Unfortunately, as far as we are aware, this interesting problem has not yet
been tackled.

Question 15. The adiabatic wave function is not dominant in the Born–Huang expan-
sion near a node of its nuclear wave function. What do you mean by “dominant” in [1,
section 5]?

Not only the adiabatic wave function is not dominant at a node of its nuclear wave
function but it is zero and this is why we have argued that Bader’s analysis would not be
meaningful at such a geometry. The word “dominant” must not be taken in a local sense
which does not make sense in the context of our article. We meant “dominant” in the
sense of the norm of the Hilbert space, that is, for allk different fromj√〈

�
j
e�

j
n

∣∣�je�jn 〉
>

√〈
�ke�

k
n

∣∣�ke�kn〉, (15)

where the Hermitian product〈 | 〉 corresponds to integration over both electronic and
nuclear variables

∫
dR dr .

A nonadiabatic study on diatomics and a numerical example onH2 [12] has shown
that the adiabatic wave function is dominant in this sense in the exact wave func-
tion.

Question 16. What is in Žislin’s article [1, reference [15]] which is in Russian?

It is a very important article which extends Hilbert and Courant nodal theorem
[9, p. 451] to the case of the clamped nuclei Schrödinger equation and to the general
translation-free molecular Schrödinger equation. Žislin also obtains as a corollary a
general and rigorous proof that the ground state of this equation is nondegenerate. The
article was quoted because the proof of the corollary makes use of the fact that two or-
thogonal eigenstates (which can be chosen real without loss of generality for the Hamil-
tonians of interest here) cannot have both a constant sign over their domain.
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